ARAHAAN KEPADA CALON:

1. Jangan buka kertas soalan ini sehingga diberitahu.
2. Calon tidak dibenarkan membawa masuk ke dalam bilik/dewan peperiksaan apa jua barang atau dokumen yang tidak dibenarkan.
5. Kertas soalan ini mengandungi ENAM soalan.
6. Markah yang diperuntukkan bagi setiap soalan dan ceraian soalan ditunjukkan dalam kunci.
7. Calon dikehendaki menjawab EMPAT soalan sahaja.
8. Jawapan calon hendaklah ditulis di dalam buku jawapan yang disediakan.
9. Calon hanya dibenarkan membawa keluar peralatan anda dan kertas soalan ini sahaja.

PERALATAN YANG DISEDIAKAN:

- Formula dikepilkan bersama
Jawab EMPAT soalan sahaja.
Answer only FOUR questions.

Soalan 1

Question 1

a) Berikan DUA (2) kepentingan mengetahui nilai faktor keselamatan

State TWO (2) important of safety factors

(5 Markah)

b) Majmuan berikut diperoleh daripada ujian tegangan yang dilakukan ke atas keluli lembut yang bergaris pusat 40 mm dan jarak tolok 80 mm. Pada had kadar, beban ialah 75 kN dan pemanjangan ialah 0.041 mm.

Beban ialah 104 kN dan beban maksimum ialah 170 kN. Selepas spesimen itu putus dan dicantumkan semula, jaraknya menjadi 7.41 cm dan garispasar pada takat ialah 14.7 mm.

The following information is obtained for a tensile test conducted on a mild steel diameter 40 mm and length gauge 80 mm. At elastic range load of 75 kN, elongation is 0.041 mm. Yield load is 104 kN and maximum load is 170 kN.

After specimen was failed and reconnected, the length is 7.41 cm and diameter at yield point is 14.7. Calculate:

i. Modulus Young
 Young Modulus

ii. Tegahan pada titik alah
 Stress at yield point

iii. Tegahan alah
 Yield stress

iv. Tegahan maksima
 Maximum stress

v. Peratus pengecutan
 Percentage of contraction

(20 Markah)
Suatu bar keluli yang dipasang tegar di kedua-dua hujung seperti rajah di bawah dikenakan suhu dari -50°C kepada 25°C. Diketahui \(E = 200 \text{ GPa} \) dan \(\alpha = 12 \times 10^{-6}/\text{°C} \).

A steel bar is rigidly supported at each end as shown below, is heated from -50°C to 25°C. Given \(E = 200 \text{ GPa} \) and \(\alpha = 12 \times 10^{-6}/\text{°C} \).

Tentukan:
Determine:

a) Jumlah pemanjangan yang terjadi akibat perubahan suhu.
 \(\text{Total elongation from the changes of temperature.} \)

b) Daya dan tegasan yang berlaku dalam setiap bahagian.
 \(\text{Force and stress on each section.} \)

Gambarajah S2.
\(\text{Figure S2} \)

Suatu rasuk mencatat ABCDE, dengan A di bahagian kiri, adalah 8 m panjang dan disokong secara mudah pada A dan D. Jarak bagi bahagian-bahagian rasuk adalah \(AB = 1 \text{ m}, BC = 2 \text{ m}, CD = 3 \text{ m} \) dan \(DE = 2 \text{ m} \). Ia membawa beban terangih sebanyak 20 kN/m antara D dan E, serta beban-beban tumpu sebanyak 90 kN di B dan 50 kN di C.

A horizontal beam ABCD, with A on the left, is 8 m long and is simply supported at A and D. The lengths of the various portions are \(AB = 1 \text{ m}, BC = 2 \text{ m}, CD = 3 \text{ m} \) and \(DE = 2 \text{ m} \). The beam carries a uniformly distributed load of 20 kN/m between D and E, together with concentrated loads of 90 kN at B and 50 kN at C.

a) Lakarkan gambarajah daya rica dan momen lentur bagi rasuk berkenaan.
 \(\text{Sketch the shear force and bending moment diagrams for the beams.} \)

b) Kenalpasti dan nentukan magnitud momen lentur maksima.
 \(\text{Identify and state the magnitude of the maximum bending moment.} \)
c) Tentukan kedudukan titik kontralentur sekitanya ada.
Determine the position of any points of contraflexure.
(3 Markah)
(3 Marks)

Soalan 4
Question 4

Satu bahagian mesin besi ruang ditindakkan dengan momen 5 kNm sebagaimana dalam **Rajah S4**. Jika diketahui bahawa $E = 165$ GPa dan kembali diabaikan, tentukan:
A cast-iron machine part is acted upon by the 5 kNm of moment as shown in Figure S4. Knowing that $E = 165$ GPa and neglecting the effects of fillets, determine:

a) Tegasan tegangan dan tegasan mampatan dalam tuangan.
The maximum tensile and compressive stresses in the casting.
(22 Markah)
(22 Marks)

b) Jejari kekelungkungan tuangan.
The radius of curvature of the casting.
(3 Markah)
(3 Marks)

Rajah S4
Figure S4
Soalan 5
Question 5

Sebatang rasuk AB disokong mudah, 6m panjang menanggung beban teranggih seragam sebanyak 10kN/m dispanjang rasuk seperti dalam Rajah S5, tentukan:
A simply supported beam AB with span of 6m supporting a uniformly distributed load 10kN/m as shown in Figure S5. determine:

a) Daya tindak balas di A dan B
Reaction force at A and B

(4 Markah)
(4 Marks)

b) Daya ricih pada keratan 1.2m dari A
Shear force of section 1.2m from A

(7 Markah)
(7 Marks)

c) Tegasan ricih di EE pada keratan 1.2m dari A
Shear stress of section EE, 1.2m from A

(14 Markah)
(14 Marks)

Rajah S5
Figure S5

Soalan 6
Question 6

a) Satu aci padu berdiameter 100 mm menghantar kuasa 75 kW pada 150 pusingan/minit. Kirakan nilai tegasan ricih maksima terhadap aci tersebut serta kirakan sudut kilasan per meter panjang aci tersebut jika G = 80 GN/m².
A solid shaft, 100 mm diameter, transmits 75 kW at 150 rev/min. Determine the value of the maximum shear stress set up in the shaft and the angle of twist per meter of the shaft length if G = 80 GN/m².

(10 Markah)
(10 Marks)
b) Jika aci dalam Soalan 6(a) dilubangkan untuk mengurangkan beratnya bagi menjadi tiub isitu 100 mm diameter luar dan 60 mm diameter dalam. Berapakah daya kilas maksima diperlukan jika tegasan ricuh maksimum tidak melebihi seperti dalam Soalan 6(a). Berapakah penambahan nisbah peratus kuasa/berat ke san daripada perubahan tersebut.

If the shaft were now bored to reduce weight to produce a tube of 100 mm outside diameter and 60 mm inside diameter. What torque could be carried if the same maximum shear stress in Question 6(a) is not to be exceeded? What is the percentage increase in power/weight ratio affected by this modification?
DAYA-DAYA PADA BAHAN

\[F.K = \frac{\text{Tegasan Maksimum}}{\text{Tegasan Kerja}} \]

\[\text{Nisbah Poisson, } \nu = \frac{\text{Keterikan Sisi}}{\text{Keterikan Melengkung}} \]

\[\text{Peratus Pemanjangan} = \frac{\text{Pertambahan panjang}}{\text{panjang asal}} \times 100\% \]

\[\text{Peratus susut dan luas} = \frac{\text{luas asal - luas leher}}{\text{luas asal}} \times 100\% \]

\[\text{Tonaga keterikan, } U = \frac{1}{2} F.S.L \]

TEGASAN SUHU DAN BAR MAJMUHK

Persamaan untuk Bar Majmuk Selari yang dikenakan suhu:

\[\frac{\sigma_1 + \sigma_2}{E_1 + E_2} = (\alpha_2 - \alpha_1)M \]

\[\varepsilon_1 + \varepsilon_2 = (\alpha_2 - \alpha_1)M \]

Persamaan untuk Bar Majmuk Selari yang dikenakan suhu:

\[\sigma = \frac{M (\alpha_1 L_1 - \alpha_2 L_2)}{A \left(\frac{L_1}{E_1} + \frac{L_2}{E_2} \right)} \]

TEGASAN RICIII

\[\sigma = \frac{P}{A} = \frac{M_y}{I} \quad A = (b d y) \quad P = \frac{M_y}{I} (b d y) \]

Keratan Rentas Segi empat Padu:

\[A = b \times a = b \left(\frac{d}{2} - h \right) \]

\[y = \frac{b + h}{2} = \frac{1}{2} (d + h) \]

Jika \(B = b \) dan \(I = \frac{b d^2}{12} \)

Keratan Rentas Bulat Padu:

\[r = \frac{4P}{\pi \rho} \left(\rho^2 - h^2 \right) \]

Daya Ricih dan Momen Lentur

\[\sum M_F, \Omega = \sum \sum M_J \]

\[\sum F \uparrow = \sum F \]

TEGASAN LENTUR

\[\frac{M}{E} = \frac{R}{I} \]

KILASAN ACI

Persamaan Kilasan Aci:

\[\frac{r}{G} = \frac{R_0}{L} \]

Momen Luas Kedua Kutub:

\[J = \int_2 \pi x^2 \, dx \]

Aci Majmuk Siri:

\[T = \frac{G_1 \theta_1}{l_1} = \frac{G_2 \theta_2}{l_2} \]

\[\theta_{\infty} = \theta_{\infty} + \theta_{\infty} = \frac{T_1 l_1}{G_1 J_1} + \frac{T_2 l_2}{G_2 J_2} \]

Aci Majmuk Selari:

\[T = T_1 + T_2 \]

\[\theta = \left(\frac{T_1 l_1}{G_1 J_1} \right) = \left(\frac{T_2 l_2}{G_2 J_2} \right) \]
<table>
<thead>
<tr>
<th>BENTUK</th>
<th>SENTROID</th>
<th>MOMEN LUAS KEDUA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x = \frac{b}{2}) \ (y = \frac{d}{2})</td>
<td>(I_{P,N} = \frac{bd^3}{12}) \ (I_{x,y} = \frac{bd^3}{3})</td>
</tr>
<tr>
<td></td>
<td>(x = \frac{d}{2}) \ (y = \frac{d}{2})</td>
<td>(I_{P,R} = \frac{\pi d^4}{64} = \frac{\pi r^4}{4})</td>
</tr>
<tr>
<td></td>
<td>(y = \frac{4r}{3\pi})</td>
<td>(I_{P,N} = 0.11r^4) \ (I_{xx} = \frac{\pi r^4}{8})</td>
</tr>
<tr>
<td></td>
<td>(y = \frac{h}{3})</td>
<td>(I_{P,N} = \frac{bh^3}{36}) \ (I_{x,y} = \frac{bh^3}{12}) \ (I_{yy} = \frac{bh^3}{48})</td>
</tr>
</tbody>
</table>